viernes, 9 de octubre de 2009

La era de la genética

Desde que su padre murió de cáncer de colon hace seis meses, William Panati, un empresario de Illinois, Estados Unidos, no logra conciliar el sueño. Y es que su bisabuelo, la abuela y el hermano fueron víctimas del tumor. Nada pudieron hacer los médicos para salvar a sus familiares.
La semilla del cáncer de colon se trasmite de padres a hijos, generación tras generación, y unas veces germina y otras permanece latente toda la vida.
Toda su materia gris ronda en torno a una maldita palabra:
Cáncer.
Es entonces cuando oye que ciertos investigadores han desarrollado una prueba sanguínea para detectar el gen que provoca la aparición del cáncer de colon. En pocos días los resultados confirman que Panati y sus tres hijas están a salvo del gen.
Panati es uno de los primeros beneficiados de uno de los avances mas revolucionarios de la medicina en los últimos tiempos: los marcadores genéticos, pedazos de ADN capaces de rastrear el material genético en busca de genes destartalados.
Esta nueva tecnología - comenta el doctor Jon Beckwith, del Departamento de Microbiología y Genética Molecular de la Escuela Medica de Harvard, Massachusetts se esta permitiendo a los médicos la identificación de individuos que podrán padecer enfermedades genéticas a lo largo de su vida, o que, estando sanos, portan genes defectuosos.
No hace menos de 25 años los especialistas, a la hora de enfrentarse a una enfermedad de origen genético, no podían hacer casi nada. La medicina estaba desarmada.
Tan solo se conocía el numero de cromosomas en humanos, su localización en el interior del núcleo y la situación de algunos genes dispersos.
Por ejemplo, el medico recibía a una pareja temerosa de volver a tener un hijo con el síndrome de Tay Sachs - una enfermedad cuyos síntomas son la ceguera y la parálisis seis meses después del nacimiento, que conducen a la muerte del niño antes de los cinco años - o afectado de miopatía de Duchenne, una atrofia muscular que deja a los enfermos postrados para siempre en una silla de ruedas.
Ante esta situación el medico podía únicamente hablar de probabilidades, de los riesgos de que se manifieste o no el gen fatal. Bien poco.
Sin embargo, hoy la ciencia esta empezando a intervenir en los cromosomas, a detectar los genes dañados mediante avisadores químicos, a darles caza con trampas moleculares y a reemplazarlos por otros en perfecto estado, valiéndose de pinzas enzimáticas. Antes estos espectaculares resultados, no es de extrañar que muchos científicos afirmen que estamos en la Era de la Genética.
La aventura de la ciencia daba comienzo en la primavera de 1953, cuando James Watson, que estaba de visita en la Universidad de Harvard, y Francis Crick, que trabajaba en Cambridge, descubrieron - sin realizar un solo experimento - la estructura del ADN, el acidodesoxirribonucleico. Mientras Crick terminaba su tesis doctoral, Watson, encerrado en su laboratorio, construía modelos de hojalata y alambre, para representar de forma tridimensional las complejas uniones entre los átomos.
Con los químicos norteamericanos Pauling y Corey pisándoles los talones, Watson y Crick partieron de unas fotografías del
ADN obtenidas por rayos x, y la utilizaron para descubrir que la molécula de ADN esta formada por una doble hélice, es decir, dos largos hilos perfectamente enrollados. Cada hilo se constituye a partir de una secuencia de bases nucleicas, cuatro en concreto - adenina ( A ), guanina ( G ),
citosina ( C ) y timina ( T ) -, que representan las letras moleculares del mensaje genético.
Por último, Crick comprobó que, combinando series de tres bases - AGC, AGT, ATA -, lo que se conoce con el nombre de tripletes, se podían obtener más de veinte alternativas distintas, las claves para sintetizar los veinte aminoácidos esenciales para la vida.
Treinta y siete años más tarde, los científicos están empezando a descubrir que en esta hélice se encuentran escritos los secretos de la vida, el envejecimiento, la muerte y enfermedades como el cáncer, los trastornos del corazón, la locura, la depresión, el mongolismo o las malformaciones genéticas.
Ahora sabemos, gracias al desarrollo de la biología molecular, que en los casi dos metros de ADN que se guarda en el núcleo de toda y cada una de las células del cuerpo están los 50.000 a 100.000 genes que dan las órdenes para edificar ladrillo a ladrillo, nuestro cuerpo.
Cada gen tiene una posición determinada y fija en el cromosoma. Lo mismo da que sea el cromosoma de un aborigen australiano, el de un indio del Amazonas o un yuppy de Manhattan. Y cuando los errores aparecen, lo hacen para todos igual. Así, por ejemplo, el mongolismo, también conocido con el nombre de trisomía del cromosoma 21 o síndrome de Down, tiene el mismo origen genético para todos los seres humanos: Un cromosoma de más.
Ya en 1909 el médico ingles Archibald Garrold se percató de que algunos rasgos hereditarios se correspondían con enfermedades metabólicas, que se caracterizaban por la ausencia de una reacción bioquímica conocida.
Garrold propuso que tales trastornos, a los que denomino errores innatos del metabolismo, se debían a la ausencia de la enzima que mediaba la reacción. Este es el caso de la enfermedad conocida como fenilcetonuria o idiotez fenilpiruvica, en la que el aminoácido fenilalanina no puede transformarse en otro aminoácido similar, la tirosína.
Este pequeño lapsus enzimático se traduce en la acumulación en sangre de una sustancia tóxica, la fenilpiruvato, que en los bebes causa un retraso mental.
Así, si nos detenemos a pensar que un gen sano dirige la síntesis de una proteína sana y juega un papel concreto en el buen funcionamiento del organismo, comprenderemos entonces que si el gen en cuestión presentara un grave defecto, este puede repercutir en la salud de la proteína. ¿ Cómo ? Pues muy sencillo: impidiendo que se fabrique o que, de lo contrario, presente una anomalía en su estructura que le impida ejercer su trabajo.
Si hemos dicho que existe entre 50.000 y 100.000 genes, esto quiere decir, en potencia, habrá el mismo número de trastornos genéticos.
Los médicos conocen en la actualidad alrededor de 3.500 enfermedades relacionadas con un patrimonio genético imperfecto, y han logrado aislar unos 1.800 genes implicados en la aparición de estos males. Pero, en estos momentos, más de 10.000 investigadores en todo
el mundo están rastreando el genoma humano, en busca de nuevos genes. Algunos frutos ya se han recogido. En marzo de este año, un grupo de científicos de la universidad de California en Los Angeles ( UCLA ), en colaboración con otro equipo del Centro de Ciencias de la Salud de la Universidad de Texas en San Antonio, descubrieron una pieza de ADN que contribuye a la aparición del cáncer de colon.
En abril, Ernest P. Noble, de la UCLA, y Kenneth Blum, de la Universidad de Texas en San Antonio, conmocionaron al mundo de la medicina, al anunciar que habían dado caza a un gen en el cromosoma 11, que estaría implicado con algunas formas de alcoholismo.
En julio, un grupo de investigadores británicos del Fondo Imperial para la Investigación del Cáncer y del Consejo de Investigación Médica hacían público el hallazgo del gen que determina el sexo masculino, en una pequeña región del cromosoma sexual Y. Cuando se activa en el embrión, el gen pone en marcha los mecanismos para la formación de los testículos, marcando el sexo definitivo del futuro bebe.
También en ese mismo mes, un grupo de científicos norteamericanos de la Facultad de Medicina John Hopkins, de Baltimore, descubrieron cuatro mutaciones genéticas que parecen ser responsables del siete por ciento de los casos de fibrosis quística o mucoviscosidosis.
Este último avance científico viene a sumarse al descubrimiento de Francis S Collins, de la Universidad de Michigan, y Lap - Chee Tsui, del hospital para niños enfermos de Toronto, Canadá del gen de la mucoviscosidosis en uno de los brazos del cromosoma 7, en septiembre del año pasado. Y en el último

No hay comentarios:

Publicar un comentario